A Remark on the Sum of Proximinal Subspaces

PEI-KEE LIN

Department of Mathematics, Memphis State University, Memphis, Tennessee 38152, U.S.A.

Communicated by Frank Deutsch

Received April 1, 1987

A subspace M of a Banach Space X is said to be *proximinal* if for every x in X, $\inf\{||x-m||: m \in M\} = d(x, M)$ is attained. E. W. Cheney and D. E. Wulbert [C-W] asked the following question:

Question 0. If U and V are proximinal subspaces of a Banach space X and if U + V is closed, does it follow that U + V is proximinal?

M. Feder [F] showed the answer to the above question is negative. Indeed, he proved the following theorems.

THEOREM A. There is a Banach space which contains nonreflexive proximinal subspaces U and V such that U + V is closed and U + V is not proximinal.

THEOREM B. Let U and V be subspaces of a Banach space X, Assume that U is proximinal, V is reflexive, $U \cap V$ is finite dimensional, and that U + V is closed, Then U + V is proximinal.

One may ask the following questions:

Question 1. Let U be a nonreflexive Banach space. Is there a Banach space X which contains U as a subspace and satisfies the following conditions:

(i) U is a proximinal subspace of X,

(ii) X contains a proximinal subspace V such that U + V is closed, but U + V is not proximinal?

Question 2. In Theorem B, can the assumption, " $U \cap V$ is finite dimensional," be dropped?

In this article, we show that the answers of both questions above are positive.

First, we need the following well-known result.

PEI-KEE LIN

LEMMA 1 (Theorem 2.15 in [S]). A normed linear space G is proximinal in every superspace E if and only if G is a reflexive Banach space, Moreover, if G is a nonreflexive Banach space, then G can be embedded isometrically as a nonproximinal closed hyperplane in another Banach space E.

Suppose U is a nonreflexive Banach space. By Lemma 1, there is a Banach space $E = \text{span} \{U, e\}$ such that U is a nonproximal closed hyperplane in E (i.e., $\inf\{||e - u||: u \in U\}$ is not attained). Let $(E \oplus E)_{\infty}$ be the Banach space

$$\{(x, y\}: x \in E, y \in E\}$$

with the norm $||(x, y)|| = \max(||x||, ||y||)$. Let $Y = U \oplus 0$, $Z = 0 \oplus U$, and X = span $(Y \cup Z \cup \{e \oplus e\})$. We claim that Y and Z are proximinal subspaces of X, and that Y + Z is closed but not proximinal in X.

(a) Y is proximinal in X. Given $y' \in Y$, $z \in Z$, and λ a scalar, we must show that there is $y \in Y$ such that $d(y' + z + \lambda(e \oplus e), Y) = ||y' + z + \lambda(e \oplus e) - y||$. Since $y' \in Y$, we may assume y' = 0. If $\lambda = 0$, then we choose y = 0 (d(z, Y) = ||z|| for any $z \in Z$). By homogeneity, we may assume $\lambda = 1$. Since U is not proximinal, for any $u \in U$

$$||e+u|| > d(e, U).$$

So if $z=0\oplus z$, then ||e+z|| > d(e, U). Let u be a vector in U such that $||e-u|| \le ||e+z||$ and let $y=u\oplus 0$. Then $d(z+(e\oplus e), Y)=$ $||z+(e\oplus e)-y||$. So Y is proximinal. Similarly, Z is proximinal.

(b) Y + Z is not proximinal. Clearly,

$$d(e \oplus e, Y+Z) = d(e, U).$$

But U is nonproximinal, so $\inf\{||e \oplus e - x|| : x \in Y + Z\}$ is not attained.

Remark 1. It is known that if U is a noncomplete norm space, then U can be embedded isometrically as a nonproximinal closed hyperplane in another norm space. So the above result is still true if U is noncomplete.

To answer the second question, we need the following lemma which was proved by E. W. Cheney and D. E. Wulbert.

LEMMA 2 (Proposition 5(3) in [C-W]). Let X be a normed linear space and let Y and Z be subspaces of E such that $Z \subseteq Y$. If Z is proximinal in X and Y/Z is proximinal in X/Z, then Y is proximinal.

So the question which E. W. Cheney asked is equivalent to:

Question 0'. Suppose U and V are proximinal in X. Is U+V/V proximinal in X/V?

By Lemma 1, we may ask under what conditions U + V/V is reflexive. It is well known that $U/U \cap V$ is algebraically isomorphic to U + V/V and the mapping $T: U/U \cap V \to U + V/V$

$$T(u + (U \cap V)) = u + V$$

has norm less than one. If U+V and X are Banach spaces by the open mapping theorem, $U/U \cap V$ and U+V/V are isomorphic. So if U is reflexive, then U+V/V is reflexive. We have the following theorem.

THEOREM 3. Let U be a Banach space. Then U is reflexive if and only if for any Banach space $X \supseteq U$, V is proximinal in X and U+V is closed implies U+V is proximinal in X.

References

- [C-W] E. W. CHENEY AND D. E. WULBERT, The existence and unicity of best approximations, Math. Scand. 24 (1969), 113-140.
- [F] M. FEDER, On the sum of proximinal subspaces, J. Approx. Theory 49 (1987), 144-148.
- [S] I. SINGER, "The Theory of Best Approximation and Functional Analysis," CBMS 13, SIAM, Philadelphia, 1974.